Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 12: 703574, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34539634

RESUMO

CD38 is the major NAD+-hydrolyzing ecto-enzyme in most mammals. As a type II transmembrane protein, CD38 is also a promising target for the immunotherapy of multiple myeloma (MM). Nanobodies are single immunoglobulin variable domains from heavy chain antibodies that naturally occur in camelids. Using phage display technology, we isolated 13 mouse CD38-specific nanobodies from immunized llamas and produced these as recombinant chimeric mouse IgG2a heavy chain antibodies (hcAbs). Sequence analysis assigned these hcAbs to five distinct families that bind to three non-overlapping epitopes of CD38. Members of families 4 and 5 inhibit the GDPR-cyclase activity of CD38. Members of families 2, 4 and 5 effectively induce complement-dependent cytotoxicity against CD38-expressing tumor cell lines, while all families effectively induce antibody dependent cellular cytotoxicity. Our hcAbs present unique tools to assess cytotoxicity mechanisms of CD38-specific hcAbs in vivo against tumor cells and potential off-target effects on normal cells expressing CD38 in syngeneic mouse tumor models, i.e. in a fully immunocompetent background.


Assuntos
ADP-Ribosil Ciclase 1/imunologia , Anticorpos Monoclonais Murinos/imunologia , Anticorpos Antineoplásicos/imunologia , Citotoxicidade Celular Dependente de Anticorpos , Cadeias Pesadas de Imunoglobulinas/imunologia , Glicoproteínas de Membrana/imunologia , Neoplasias/imunologia , ADP-Ribosil Ciclase 1/genética , Animais , Anticorpos Monoclonais Murinos/genética , Anticorpos Antineoplásicos/genética , Linhagem Celular Tumoral , Humanos , Cadeias Pesadas de Imunoglobulinas/genética , Glicoproteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout
2.
Mod Pathol ; 34(7): 1333-1344, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33714982

RESUMO

Studies validating the prognostic accuracy of the tumor-node-metastases (TNM) classification in patients with lung cancer treated by neoadjuvant therapy are scarce. Tumor regression, particularly major pathological response (MPR), is an acknowledged prognostic factor in this setting. We aimed to validate a novel combined prognostic score. This retrospective single-center study was conducted on 117 consecutive patients with non-small cell lung cancer resected after neoadjuvant treatment at a Swiss University Cancer Center between 2000 and 2016. All cases were clinicopathologically re-evaluated. We assessed the prognostic performance of a novel prognostic score (PRSC) combining T-category, lymph node status, and MPR, in comparison with the eighth edition of the TNM classification (TNM8), the size adapted TNM8 as proposed by the International Association for the Study of Lung Cancer (IASLC) and MPR alone. The isolated ypT-category and the combined TNM8 stages accurately differentiated overall survival (OS, stage p = 0.004) and disease-free survival (DFS, stage p = 0.018). Tumor regression had a prognostic impact. Optimal cut-offs for MPR emerged as 65% for adenocarcinoma and 10% for non-adenocarcinoma and were statistically significant for survival (OS p = 0.006, DFS p < 0.001). The PRSC differentiated between three prognostic groups (OS and DFS p < 0.001), and was superior compared to the stratification using MPR alone or the TNM8 systems, visualized by lower Akaike (AIC) and Bayesian information criterion (BIC) values. In the multivariate analyses, stage III tumors (HR 4.956, p = 0.003), tumors without MPR (HR 2.432, p = 0.015), and PRSC high-risk tumors (HR 5.692, p < 0.001) had significantly increased risks of occurring death. In conclusion, we support 65% as the optimal cut-off for MPR in adenocarcinomas. TNM8 and MPR were comparable regarding their prognostic significance. The novel prognostic score performed distinctly better regarding OS and DFS.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/patologia , Metástase Linfática/patologia , Estadiamento de Neoplasias/métodos , Idoso , Intervalo Livre de Doença , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Terapia Neoadjuvante , Prognóstico , Estudos Retrospectivos
3.
Theranostics ; 10(6): 2645-2658, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32194826

RESUMO

Rationale: CD38 is a target for the therapy of multiple myeloma (MM) with monoclonal antibodies such as daratumumab and isatuximab. Since MM patients exhibit a high rate of relapse, the development of new biologics targeting alternative CD38 epitopes is desirable. The discovery of single-domain antibodies (nanobodies) has opened the way for a new generation of antitumor therapeutics. We report the generation of nanobody-based humanized IgG1 heavy chain antibodies (hcAbs) with a high specificity and affinity that recognize three different and non-overlapping epitopes of CD38 and compare their cytotoxicity against CD38-expressing hematological cancer cells in vitro, ex vivo and in vivo. Methods: We generated three humanized hcAbs (WF211-hcAb, MU1067-hcAb, JK36-hcAb) that recognize three different non-overlapping epitopes (E1, E2, E3) of CD38 by fusion of llama-derived nanobodies to the hinge- and Fc-domains of human IgG1. WF211-hcAb shares the binding epitope E1 with daratumumab. We compared the capacity of these CD38-specific hcAbs and daratumumab to induce CDC and ADCC in CD38-expressing tumor cell lines in vitro and in patient MM cells ex vivo as well as effects on xenograft tumor growth and survival in vivo. Results: CD38-specific heavy chain antibodies (WF211-hcAb, MU1067-hcAb, JK36-hcAb) potently induced antibody-dependent cellular cytotoxicity (ADCC) in CD38-expressing tumor cell lines and in primary patient MM cells, but only little if any complement-dependent cytotoxicity (CDC). In vivo, CD38-specific heavy chain antibodies significantly reduced the growth of systemic lymphomas and prolonged survival of tumor bearing SCID mice. Conclusions: CD38-specific nanobody-based humanized IgG1 heavy chain antibodies mediate cytotoxicity against CD38-expressing hematological cancer cells in vitro, ex vivo and in vivo. These promising results of our study indicate that CD38-specific hcAbs warrant further clinical development as therapeutics for multiple myeloma and other hematological malignancies.


Assuntos
ADP-Ribosil Ciclase 1/imunologia , Anticorpos Monoclonais Humanizados/uso terapêutico , Neoplasias Hematológicas/tratamento farmacológico , Imunoglobulina G/uso terapêutico , Cadeias Pesadas de Imunoglobulinas/uso terapêutico , Glicoproteínas de Membrana/imunologia , Mieloma Múltiplo/tratamento farmacológico , Anticorpos de Domínio Único/uso terapêutico , Idoso , Animais , Linhagem Celular Tumoral , Epitopos/imunologia , Feminino , Humanos , Masculino , Camundongos , Camundongos SCID , Pessoa de Meia-Idade
4.
Clin Neuroradiol ; 28(1): 63-67, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27334101

RESUMO

BACKGROUND: Magnetic resonance (MR) relaxometry is of increasing scientific relevance in neurodegenerative disorders but is still not established in clinical routine. Several studies have investigated relaxation time alterations in disease-specific areas in Parkinson's disease (PD), all using manually drawn regions of interest (ROI). Implementing MR relaxometry into the clinical setting involves the reduction of time needed for postprocessing using an investigator-independent and reliable approach. The aim of this study was to evaluate an automated, atlas-based ROI method for evaluating T2* relaxation times in patients with PD. METHOD: Automated atlas-based ROI analysis of quantitative T2* maps were generated from 20 PD patients and 20 controls. To test for the accuracy of the atlas-based ROI segmentation, we evaluated the spatial overlap in comparison with manually segmented ROIs using the Dice similarity coefficient (DSC). Additionally, we tested for group differences using our automated atlas-based ROIs of the putamen, globus pallidus, and substantia nigra. RESULTS: A good spatial overlap accuracy was shown for the automated segmented putamen (mean DSC, 0.64 ± 0.04) and was inferior but still acceptable for the substantia nigra (mean DSC, 0.50 ± 0.17). Based on our automated defined ROI selection, a significant decrease of T2* relaxation time was found in the putamen as well as in the internal and external globus pallidus in PD patients compared with healthy controls. CONCLUSION: Automated digital brain atlas-based approaches are reliable, more objective and time-efficient, and therefore have the potential to replace the time-consuming manual drawing of ROIs.


Assuntos
Mapeamento Encefálico , Globo Pálido/diagnóstico por imagem , Doença de Parkinson/diagnóstico por imagem , Feminino , Alemanha , Globo Pálido/patologia , Humanos , Imageamento por Ressonância Magnética , Masculino , Doença de Parkinson/patologia
5.
Sci Rep ; 7(1): 14289, 2017 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-29084989

RESUMO

The cell surface ecto-enzyme CD38 is a promising target antigen for the treatment of hematological malignancies, as illustrated by the recent approval of daratumumab for the treatment of multiple myeloma. Our aim was to evaluate the potential of CD38-specific nanobodies as novel diagnostics for hematological malignancies. We successfully identified 22 CD38-specific nanobody families using phage display technology from immunized llamas. Crossblockade analyses and in-tandem epitope binning revealed that the nanobodies recognize three different non-overlapping epitopes, with four nanobody families binding complementary to daratumumab. Three nanobody families inhibit the enzymatic activity of CD38 in vitro, while two others were found to act as enhancers. In vivo, fluorochrome-conjugated CD38 nanobodies efficiently reach CD38 expressing tumors in a rodent model within 2 hours after intravenous injection, thereby allowing for convenient same day in vivo tumor imaging. These nanobodies represent highly specific tools for modulating the enzymatic activity of CD38 and for diagnostic monitoring CD38-expressing tumors.


Assuntos
ADP-Ribosil Ciclase 1/metabolismo , Anticorpos Monoclonais/uso terapêutico , Antineoplásicos/uso terapêutico , Glicoproteínas de Membrana/metabolismo , Mieloma Múltiplo/diagnóstico , Mieloma Múltiplo/tratamento farmacológico , Anticorpos de Domínio Único/imunologia , ADP-Ribosil Ciclase 1/imunologia , Animais , Camelídeos Americanos , Linhagem Celular Tumoral , Técnicas de Visualização da Superfície Celular , Modelos Animais de Doenças , Epitopos/imunologia , Corantes Fluorescentes , Humanos , Glicoproteínas de Membrana/imunologia , Camundongos , Camundongos Nus , Mieloma Múltiplo/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...